A Learning-Based Framework for Velocity Control in Autonomous Driving
نویسندگان
چکیده
منابع مشابه
Deep Reinforcement Learning framework for Autonomous Driving
Reinforcement learning is considered to be a strong AI paradigm which can be used to teach machines through interaction with the environment and learning from their mistakes. Despite its perceived utility, it has not yet been successfully applied in automotive applications. Motivated by the successful demonstrations of learning of Atari games and Go by Google DeepMind, we propose a framework fo...
متن کاملA Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning
For safe and efficient planning and control in autonomous driving, we need a driving policy which can achieve desirable driving quality in long-term horizon with guaranteed safety and feasibility. Optimization-based approaches, such as Model Predictive Control (MPC), can provide such optimal policies, but their computational complexity is generally unacceptable for real-time implementation. To ...
متن کاملA ’Cognitive Driving Framework’ for Collision Avoidance in Autonomous Vehicles
The Cognitive Driving Framework is a novel method for forecasting the future states of a multi-agent system that takes into consideration both the intentions of the agents as well as their beliefs about the environment. This is particularly useful for autonomous vehicles operating in an urban environment. The algorithm maintains a posterior probability distribution over agent intents and belief...
متن کاملa framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran
the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...
15 صفحه اولCombining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving
With the development of state-of-art deep reinforcement learning, we can efficiently tackle continuous control problems. But the deep reinforcement learning method for continuous control is based on historical data, which would make unpredicted decisions in unfamiliar scenarios. Combining deep reinforcement learning and safety based control can get good performance for self-driving and collisio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automation Science and Engineering
سال: 2016
ISSN: 1545-5955,1558-3783
DOI: 10.1109/tase.2015.2498192